REFCARDZ

tech facts at your fingertips

- !DZone

= About Spring Configuration
* The Beans Namespace

* The Context Namespace

= The AOP Namespace

= The JEE Namespace

refcardz.com

Spring Configuration

By Craig Walls

= Spring Annotations
= Hot Tips and more...

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans”

ABOUT SPRING CONFIGURATION

The Spring Framework has forever changed the face of enterprise

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://www.springframework.org/
Java development, making it easier than ever to configure and schema/beans

http://www.springframework.org/schema/beans/spring-

assemble application objects and services in a loosely-coupled beans_2.5 xsdrs

manner. As you develop your Spring-enabled applications,

L
Ll
o
LL
-
(o)
[T
3
o
2
(]
0
=
(S}
(72]
0
=}
(72]

you'll find this reference card to be a handy resource for Spring
context configuration. It catalogs the XML elements available as
of Spring 2.5, highlighting the most commonly used elements.

<!-- place configuration details here -->

</beans>

In addition to Spring XML configuration, there'll also be a guide
to Spring’s rich set of annotations, which are useful for minimizing
the amount of XML needed to configure Spring.

DEPENDENCY INJECTION IN A NUTSHELL

Although the Spring Framework does many things, dependency

injection is the foundational functionality provided by the
Spring container.

Any non-trivial application is composed of two or more objects

Within the <beans> element, you'll place bean declarations
and other elements that configure your application’s context.
The "beans” namespace was the first and is still the primary
namespace in Spring’s XML configuration—but it isn't alone.
Spring also comes with seven more namespaces that will be
described in this reference card. If you wish to use one of
the other namespaces, you'll need to be sure to declare them.
For example, if you want to use the “context” namespace,
you should declare it in XML as follows:

<?xml version="1.0"” encoding="UTF-8"?>

that collaborate to perform some business logic. Traditionally, <beans xmlns="http://www.springframework.org/schema/beans”

each of those objects is responsible for obtaining references
to those objects that it collaborates with (its dependencies).
This leads to tightly-coupled and hard-to-test code.

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xmlns:context="http://www.springframework.org/schema/
context”

xsi:schemaLocation="http://www.springframework.org/
schema/beans

www.dzone.com

http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd

I need a
treasure map

I'll give you a

treasure map http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/
spring-context-2.5.xsd"”>

<!-- place configuration details here -->

</beans>

With dependency injection, however, objects are given their

Get More Refcardz
(They're free!)

= Authoritative content

= Designed for developers

= Written by top experts

= Latest tools & technologies
= Hot tips & examples

= Bonus content online

= New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

dependencies by some external entity. In other words, depen-
dencies are injected into the objects that need them. In the case
of a Spring-enabled application, it is the Spring container that
injects objects into the objects that depend on them.

CONFIGURING SPRING WITH XML

As of Spring 2.0, you are encouraged to use Spring’s XML
Schema-based configuration, which is more flexible than the
legacy DTD-based XML. A typical Spring 2.5 configuration will
have, at minimum, the following structure:

Spring Configuration

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

THE BEANS NAMESPACE

The <bean> Element Distilled
Even though there are several XML elements that can be used
to configure a Spring context, the one you'll probably use the

Schema URI : .
- most often is the <bean> element. Therefore, it only seems
www.springframework.org/schema/beans .)) .
right that you get to know the attributes of <bean> in detail.
Schema XSD
www.springframework.org/schema/beans/spring-beans-2.5.xsd Attribute Description
The b is th Sori d abstract If true, the bean is abstract and will not be instantiated by the
€ beans namespace IS € core sSpring namespace an Spring container.
the one y'ou Il use most when conﬂgurlr.wg Spring. The root autowire Declares how and if a bean should be autowired. Valid values are
element is the <beans> element. It typically contains one or byType, byName, constructor, autodetect, or no for no autowiring.
more <bean> elements, but it may include elements from other autowire- If false, the bean is not a candidate for autowiring into
namespaces and may not even include a <bean> element at all. candidate another bean.
class The fully-qualified class name of the bean.
dependency- | Determines how Spring should enforce property setting on the bean.
Sprlng XML Dlag ram Key check simple indicates that all primitive type properties should be set;
. . . . objects indicates that all complex type properties should be set.
The Spring XML diagrams use the following notations to
indi ed ol dinali d i Other value values are default, none, or all.
nai r 1T men rainali n ntainment:
cate required elements, ca ality, and conta ent depends-on Identifies a bean that should be instantiated by the container
before this bean is instantiated.
i ?
0 Required XML element 2L Zero OT one destroy- Specifies a method that should be invoked when a bean is
* O Zero or more — Containment method unloaded from the container.

Bean Namespace Diagram

factory-bean Used with factory-method, specifies a bean that provides a

factory method to create this bean.

description

il

replaced-method

Bean Namespace Elements

Element Description
<alias> Creates an alias for a bean definition.
<bean> Defines a bean in the Spring container.

<constructor-arg> Injects a value or a bean reference into an argument of
the bean’s constructor. Commonly known as constructor

injection.

<description> Used to describe a Spring context or an individual bean.
Although ignored by the container, <description> can be

used by tools that document Spring contexts.

<import> Imports another Spring context definition.

<lookup-method> Enables getter-injection by way of method replacement.
Specifies a method that will be overridden to return a

specific bean. Commonly known as getter-injection.

<meta> Allows for meta-configuration of the bean. Only useful
when there are beans configured that interprets and acts
on the meta information.

<property> Injects a value or a bean reference into a specific property

of the bean. Commonly known as setter-injection.

<replaced-method> | Replaces a method of the bean with a new implementation.

Don’t put all your beans in one XML file. Once
your application gets beyond the trivial stage,
you'll likely have an impressive amount of XML
in your Spring configuration. There’s no reason
to put all of that configuration in a single XML file. Keep your
Spring configuration more manageable by splitting it across

[constructor-arg J factory- The name of a method that will be used instead of the constructor
method to instantiate this bean.
[description] id The identity of this bean in the Spring container.
init-method The name of a method that should be invoked once the bean
(lookup-method j has been instantiated and injected.
lazy-init If true the bean will be lazily instantiated. If false, the bean will
[meta j be eagerly instantiated.
name The name of the bean. This is a weaker alternative to id.
(BESRENY j parent Specifies a bean from whom this bean will inherit its configuration.
[j scope Sets the scope of the bean. By default, all beans are singleton-

scoped. Other scopes include prototype, request, and session.

Bean Namespace Example

The following Spring XML configures two beans, one injected

into the other:

<?xml version="1.0" encoding="UTF-8"?2>

<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://www.springframework.org/

schema/beans

http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd"”>

<bean id="pirate” class="Pirate”>
<constructor-arg value="Long John Silver” />
<property name="map” ref="treasureMap” />
</bean>

<bean id="treasureMap” class="TreasureMap” />
</beans>
The first bean is given “pirate” as its ID and is of type “Pirate.”
It is to be constructed through a constructor that takes a
String as an argument—in this case, it will be constructed with
"Long John Silver” as that value. In addition, its “map” property
is wired with a reference to the “treasureMap” bean, which is
defined as being an instance of TreasureMap.

several XML files. Then assemble them all together when creat-
ing the application context or by using the <import> element:

<import resource="service-layer-config.xml” />
<import resource="data-layer-config.xml” />

<import resource="transaction-config.xml” />

DZone, Inc. | www.dzone.com

http://www.refcardz.com

7 REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

THE CONTEXT NAMESPACE

Schema URI
www.springframework.org/schema/context

Schema XSD
www.springframework.org/schema/context/spring-context-2.5.xsd

The context namespace was added in Spring 2.5 to provide several
application context-specific configurations. It includes support for
annotation-based configuration, JMX, and domain object injection.

Context Namespace Diagram

—>(<context fig]

—P[<context:component-scan>

<context:exclude-filter>
<context:include-filter>

—>(<context:load-time-weaver>)

[<beans>)——>(<context:mbean-export>]

—>(<context:mbean-server>]

e oiders

—>[<context:spring-configured>]

t:property-pl.

Context Namespace Elements

Element Description

<context:annotation-config> | Enables annotation-based configuration in
Spring beans. This element is not needed if the

<context:component-scan> element is in use.

<context:component-scan> | Scans packages for beans to automatically register in
the Spring container. Use of this element implies the

same functionality as <context:annotation-config>.

<context:exclude-filter> Used to exclude certain classes from being

automatically registered by component-scan.

<context:include-filter> Used to specify which classes to include when

component-scan automatically registers beans.

<context:load-time-weaver> | Registers an AspectJ load-time weaver.

<context:mbean-export> Exports beans as JMX MBeans.

<context:mbean-server> Starts an MBean server with the Spring context.

<context:property-
placeholder>

Enables external configuration via a
properties file.

<context:spring-configured> | Enables injection into objects that are not

instantiated by Spring.

Context Namespace Example

The following Spring configuration uses <context:component-
scan> to automatically register certain beans from the
"com.springinaction.service” namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/
beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:context="http://www.springframework.org/schema/
context”
xsi:schemaLocation="http://www.springframework.org/
schema/beans
http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/
spring-context-2.5.xsd"”>

<context:component-scan base-package="com.springinac-
tion.service” />

</beans>

As configured above, <context:component-scan> will scan the
“com.springinaction.service” package and will automatically
register as beans all of the classes it finds that are annotated with
@Component, @Controller, @Repository, @Service, or @Aspect.

Externalize configuration for end users

Not all configuration has to be done in Spring.

You wouldn't expect the administrators or

end users of your application to dig around in
Spring XML to tweak database or other deployment-specific
details, would you? Instead, externalize configuration using
<context:property-placeholder>:

<context:property-placeholder
location="file:////etc/pirate.properties”

The name-value pairs from /etc/pirate.properties can then be
used to fill in placeholder values in the Spring context.

For example:

<bean id="pirate” class="Pirate”>

<constructor-arg value="${pirate.name}” />
</bean>

THE AOP NAMESPACE

Schema URI
www.springframework.org/schema/aop

Schema XSD
www.springframework.org/schema/aop/spring-aop-2.5.xsd

The aop namespace makes it possible to declare aspects,
pointcuts, and advice in a Spring context. It also provides support
for annotation-based aspects using @AspectJ annotations.
Using aspects, you can define functionality that is applied

(or "woven") across many points of your application.

> coopator)

— > <aop:after-returning>

p:asp ;-autoproxy>>—|->(— —>[< p: ‘neu-throwing>]
>

<b »-|<aop

<aop:config> BN
)_—P p:asp H [
[<bean>)—>(<aop:scoped-proxy> j > <aop:before>

> <aop:declare-parents>

Lo (sempoman)

AOP Namespace Diagram

<aop:around> j

AOP Namespace Elements

Element

Description

<aop:advisor>

Declares a Spring AOP advisor.

<aop:after>

Declares after advice (e.g., a method to be invoked
after a pointcut).

<aop:after-returning>

Declares after-returning advice (e.g., a method to
be invoked after a pointcut successfully returns).

<aop:after-throwing>

Declares after-throwing advice (e.g., a method to be
invoked after an exception is thrown from a pointcut).

<aop:around>

Declares around advice (e.g., a method whose
functionality wraps a pointcut).

<aop:aspect>

Defines an aspect, including one or more pointcuts
and one or more advices.

<aop:aspectj-autoproxy>

Enables declaration of aspects using @AspectJ
annotations.

<aop:before>

Declares before advice (e.g., a method to be
invoked before a pointcut executes).

<aop:config>

The parent element for most elements in the AOP
namespace.

DZone, Inc. | www.dzone.com

http://www.refcardz.com

43 REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

AOP Namespace Elements, continued

Element Description

<aop:declare-parents> Defines an AOP introduction (effectively a mixin).

<aop:include> Optionally used with aspectj-autoproxy to
specify which @AspectJ-annotated beans to

create proxies for.

<aop:pointcut> Declares a pointcut (e.g., an opportunity for

advice to be applied).

<aop:scoped-proxy> Specifies a proxy for beans declared with

complex scoping such as “request” and “session”.

AOP Namespace Example
The following Spring configuration creates an aspect using
elements from the aop namespace:

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:aop="http://www.springframework.org/schema/aop”
xsi:schemaLocation="http://www.springframework.org/
schema/beans
http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-
aop-2.5.xsd”>

<bean id="pirateTalker” class="PirateTalker” />

<aop:config>
<aop:pointcut id="plunderPointcut”
expression="execution(* *.plunder(..))” />

<aop:aspect ref="pirateTalker”>
<aop:before pointcut-ref="plunderPointcut”
method="sayAvastMeHearties” />

<aop:after-returning pointcut-ref="plunderPointcut”
method="sayYarr” />
</aop:aspect>
</aop:config>
</beans>

The aspect is made up of one pointcut and two advice defini-
tions. The pointcut is defined as the execution of the plunder()
method on any object. The <aop:before> advice is configured
to call the sayAvastMeHearties() method on the “pirateTalker”
bean when the plunder() method is executed. Likewise, the
sayYarr() method will be invoked upon execution of the plunder()
method on any object.

Reduce AOP-related XML by using @AspectJ
annotations

The elements in the “aop” namespace make it
rather easy to turn plain old Java objects into
aspects. But the <aop:aspectj-autoproxy>
element can single-handedly eliminate the
need for almost all other “aop” namespace

XML. By placing <aop:aspectj-autoproxy> in
your Spring configuration, you can move your
pointcut and advice declaration into your Java
code using @AspectJ annotations such as @
Aspect, @Pointcut, @Before, and @After. Refer
to Chapter 4, section 4.3.2 of Spring in Action,
Second Edition for more details.

THE JEE NAMESPACE

Schema URI
www.springframework.org/schema/jee

Schema XSD
www.springframework.org/schema/jee/spring-jee-2.5.xsd

The JEE namespace provides configuration elements for
looking up objects from JNDI as well as wiring references to
EJBs into a Spring context.

JEE Namespace Diagram

<jee:jndi-lookup> j

j—»[<jee:environment>]

[<beans> <jee:local-slsb>

<jee:remote-sisb>

JEE Namespace Elements

Element Description

<jee:jndi-environment> | Defines environment settings for JNDI lookups.

<jee:jndi-lookup> Declares a reference to an object to be retrieved

from JNDI.

<jee:local-slsb> Declares a reference to a local stateless session EJB.

<jee:remote-slsb> Declares a reference to a remote stateless session EJB.

JEE Namespace Example
The following Spring configuration uses a few of the jee
namespace’s elements to retrieve objects from outside of
Spring and configure them as Spring beans:
<?xml version="”1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:jee="http://www.springframework.org/schema/jee”
xsi:schemaLocation="http://www.springframework.org/
schema/beans
http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-
jee-2.5.xsd">

<jee:remote-slsb id="hispaniola”
jndi-name="ejb/PirateShip”
business-interface="com.pirate.PirateShipEjb”
resource-ref="true” />

<jee:jndi-lookup id="parrot”
jndi-name="pirate/Parrot “
resource-ref="false” />

</beans>

The first element, <jee:remote-slsb>, configures a bean named
“Hispaniola” which is actually a reference to an EJB 2 remote
stateless session bean. The EJB’s home interface is found in
JNDI under the name “java:comp/env/ejb/PirateShip”. The
resource-ref attribute indicates that the value in jndi-name
should be prefixed by “java:comp/env/”. The EJB implements
methods defined in the PirateShipEjb business interface.

The other element, <jee:jndi-lookup>, retrieves a reference to
an object from JNDI (it could be an EJB 3 session bean or just a
plain Java object). The object is found in JNDI under the name
"pirate/Parrot”. Because resource-ref is “false”, the jndi-name
is not prefixed with “java:comp/env/".

DZone, Inc. | www.dzone.com

http://www.refcardz.com

REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

THE JMS NAMESPACE

Schema URI
www.springframework.org/schema/jms

Schema XSD
www.springframework.org/schema/jms/spring-jms-2.5.xsd

The JMS namespace provides elements for configuring
message-driven POJOs, beans that respond to messages that
arrive on a JMS destination (either a topic or a queue).

JMS Namespace Diagram

<jms:jca-Iistener-container>]—+

[<jee:environment>]

THE LANG NAMESPACE

Schema URI
www.springframework.org/schema/lang

Schema XSD
www.springframework.org/schema/lang/spring-lang-2.5.xsd

The “lang” namespace enables you to wire scripted objects
into Spring. These objects can be written in either Groovy,
JRuby, or BeanShell.

Lang Namespace Diagram

<lang:defaults>

<lang:bsh>

<jms:listener-container>

JMS Namespace Elements

[<lang:inline-script>]

<lang:groovy>

(<lang:property> j

<lang:jruby>

Lang Namespace Elements

Element Description

<jms:jca-listener-container> | Configures a container for JCA-based JMS

destination listeners.

Element Description

<lang:bsh> Configures a BeanShell-defined bean.

<lang:defaults> Configures defaults to be applied to all scripted beans.

<jms:listener-container> Configures a container for standard JMS

destination listeners.

<jms:listener> Declares a listener to a JMS destination.

Used to create message-driven POJOs.

JMS Namespace Example
The following Spring configuration sets up a message-driven
POJO that responds to messages that arrive on a queue.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:jms="http://www.springframework.org/schema/jms”
xsi:schemaLocation="http://www.springframework.org/schema/
beans
http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms-
2.5.xsd">

<bean id="connectionFactory”
class="org.apache.activemq.ActiveMQConnectionFactory”>
<property name="brokerURL"” value="tcp://localhost:61616"
/>
</bean>

<bean id="messageHandlerService” class="com.pirate.Message-
HandlerImpl” />

<jms:listener-container connection-
factory="connectionFactory”>
<jms:listener
destination="queue.bottle”
ref="messageHandlerService”
method="readMessageFromBottle” />
</jms:listener-container>
</beans>

The <jms:listener-container> configures a container for han-
dling messages arriving on topics or queues coming in on the
JMS connection factory. Within this element you may declare
one or more <jms:listener> elements to respond to specific
topics. In this case, the single <jms:listener> reacts to messages
arriving in the “queue.bottle” topic, invoking the readMessage-
FromBottle() method of the “messageHandlerService” bean
when they arrive.

<lang:groovy> Declares a bean implemented as a Groovy script.

<lang:inline-script> Embeds a scripted bean’s code directly in Spring XML.

<lang:jruby> Declares a bean implemented as a JRuby script.

<lang:property> Used to inject values or references into scripted beans.

Lang Namespace Example
In this Spring context, a Pirate bean is injected with scripted
beans defined with <lang:groovy> and <lang:jruby>:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:lang="http://www.springframework.org/schema/lang”
xsi:schemalLocation="http://www.springframework.org/
schema/beans
http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-
lang-2.5.xsd"”>

<bean id="jackSparrow” class="Pirate”>
<constructor-arg value="Jack Sparrow” />
<property name="compass” ref="compass” />
<property name="hat” ref="hat” />
</bean>

<lang:groovy id="compass”
script-source="classpath:Compass.groovy”
refresh-check-delay="10000" />

<lang:jruby id="hat”
script-source="classpath:PirateHat.rb”
script-interface="PirateHat”
refresh-check-delay="60000" />
</beans>
The <lang:groovy> element creates a bean that is implemented
as a Groovy script called Compass.groovy and found in the root
of the classpath. The refresh-check-delay attribute indicates that
the script should be checked every 10 seconds for updates and
reloaded if the script changes.

The <lang:jruby> element creates a bean that is implemented
as a Ruby (JRuby, specifically) script called PirateHat.rb.

It implements a PirateHat interface and is checked for updates
once per minute.

DZone, Inc. | www.dzone.com

http://www.refcardz.com

7 REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

THE TX NAMESPACE
Configure transactional rules in Java

Schema URI
www.springframework.org/schema/tx

If you're looking for ways to cut back on the

amount of XML in a Spring configuration, consider
Schema XSD using the <tx:annotation-driven> element. Once
www.springframework.org/schema/tx/spring-tx-2.5.xsd this element is in place, you can start annotating

The “tx" namespace provides support for declarative transac- your beans and their methods with @Transac-

tions across beans declared in Spring. tional to define transactional boundaries and

TX Namespace Diagram rules. Have a look at chapter 6, section 6.4.4 of
<teadvices J [< tx:attributes>] (<temetho d>] Spring in Action, Second Edition to learn more.
[<beans>
<tx:annotation-driven>j
THE UTIL NAMESPACE
TX Namespace Elements
: Schema URI
Element Description . .
B www.springframework.org/schema/util
<tx:advice> Declares transactional advice.
- - - - - - Schema XSD
<tx:annotation-driven> | Configures Spring to use the @Transactional annotation for

e A ey www.springframework.org/schema/util/spring-util-2.5.xsd
<tx:attributes> Declares transactional rules for one or more methods. The utility namespace provides elements that make it possible
<tx:jta-transaction- Configures a JTA transaction manager, automatically to wire collections and other non-bean objects in Spl’il’]g as if
manager> detecting WebLogic, WebSphere, or OC4J. they were any other bean
<tx:method> Describes transactional rules for a given method signature.

Util Namespace Diagram
TX Namespace Example

The following Spring configuration uses elements in the tx —>(<util:constant>)
namespace to configure transactional rules and boundaries:
> <util:list>
<?xml version="1.0" encoding="UTF-8"7?2> (util:list)
<beans xmlns="http://www.springframework.org/schema/beans” "
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” > (<util:map> j
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:aop="http://www.springframework.org/schema/aop” —>(<util:properties> j
xsi:schemalocation="http://www.springframework.org/
schema/beans q
. . > < :set>
http://www.springframework.org/schema/beans/spring- (util:set)
beans-2.5.xsd
http://www.springframework.org/schema/aop > (<util:property-path>)

http://www.springframework.org/schema/aop/spring-
aop-2.5.xsd

http://www.springframework.org/schema/tx Util Namespace Elements
http://www.springframework.org/schema/tx/spring-tx-
2.5.xsd"> -
Element Description
<tx:jta-transaction-manager />
<util:constant> References a static field on a type and exposes its value as a bean.
<tx:advice id="txAdvice”>
<tx:attributes> <util:list> Declares a list of values or references as a bean.
<tx:method name="plunder*” propagation="REQUIRED” /> X
<tx:method name="*" propagation="SUPPORTS"” /> <util:map> Declares a map as a bean.

</tx:attributes>

i <util: ies> java.util. i ies fi
</tx:advice> util:properties Loads a java.util.Properties from a properties file and

exposes it as a bean.

<aop:config>

<aop:advisor <util:set> Declares a set as a bean.
ggiig;ﬁ:;ifi:ﬁgiigéj };Plrate e <util:property- References a bean property (or a nested property) and exposes
</aop:config> path> that property as a bean itself.
</beans>
The <tx:jta-transaction-manager> was added in Spring 2.5 to Util Namespace Example
automatically detect the JTA transaction manager provided by The following Spring configuration uses several elements from
either WebLogic, WebSphere, or OC4J. It exposes the transac- the “util” namespace:

tion manager as a bean in the Spring context with the name

" . " <?xml version="1.0" encoding="UTF-8"?2>
transactionManager”.

<beans xmlns="http://www.springframework.org/schema/beans”

Next, the <tx:advice> sets up AOP advice that declares the xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

. . . xmlns:util="http://www.springframework.org/schema/util”
transactional rules. In this case, any methods with names that . S)

o B . X xsi:schemaLocation="http://www.springframework.org/
start with “plunder” require transactions. All other methods schema/beans
support transactions, but do not require them. Finally, this http://www.springframework.org/schema/beans/spring-
example borrows from the aop namespace to configure an AOP beans-2.5.xsd , ,
dvi h h . [advi h . h . http://www.springframework.org/schema/util

advisor that uses the transactional advice. The pointcut here is http: //www. springframework.org/schema/util/spring—
for all methods in the Pirate class. util-2.5.xsd”>

DZone, Inc. | www.dzone.com

http://www.refcardz.com

47 REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

THE UTIL NAMESPACE, continued

Util Namespace Example, continued

<util:list id="piratePhrases”>
<value>Yo ho ho</value>
<value>Yarr</value>
<value>Avast me hearties!</value>
<value>Blow me down</value>
</util:list>

<util:constant id="pirateCode”
static-field="Pirate.PIRATE_CODE” />

<util:property-path id="doubloonCount”
path="pirate.treasure.doubloonCount” />

</beans>

The <util:list> element is used here to create a list of Strings
containing various phrases uttered by pirates. The <util:constant>
element creates a reference to the constant (public static field)
named PIRATE_CODE of the Pirate class. Finally, the <util:property-
path> digs deep into the “pirate” bean, retrieving the value of

the doubloonCount property of the treasure property of the bean
named “pirate”. In all three cases, the resulting values are exposed
as beans in the Spring context, suitable for injection into other beans.

SPRING ANNOTATIONS

Historically, Spring configuration has primarily involved XML.
But that is changing as Spring gradually embraces annotation-
driven configuration. As of Spring 2.5, there are 36 annotations
provided by Spring, not to mention annotations provided by
third party libraries and various Spring add-ons.

Context Configuration Annotations
These annotations are used by Spring to guide creation and
injection of beans.

Annotation Use Description
@Autowired Constructor, Declares a constructor, field, setter method,
Field, Method or configuration method to be autowired by

type. Items annotated with @Autowired do
not have to be public.

Stereotyping Annotations

These annotations are used to stereotype classes with regard to
the application tier that they belong to. Classes that are annotated
with one of these annotations will automatically be registered in
the Spring application context if <context: component-scan> is
in the Spring XML configuration.

In addition, if a PersistenceExceptionTranslationPostProcessor
is configured in Spring, any bean annotated with @Repository will
have SQLExceptions thrown from its methods translated into
one of Spring’s unchecked DataAccessExceptions.

Annotation Use Description

@Component Type Generic stereotype annotation for any Spring-managed

component.

@Controller Type Stereotypes a component as a Spring MVC controller.

@Repository Type Stereotypes a component as a repository. Also
indicates that SQLExceptions thrown from the
component’s methods should be translated into

Spring DataAccessExceptions.

@Service Type Stereotypes a component as a service.

Spring MVC Annotations

These annotations were introduced in Spring 2.5 to make it
easier to create Spring MVC applications with minimal XML
configuration and without extending one of the many imple-
mentations of the Controller interface.

Annotation Use Description
@Controller Type Stereotypes a component as a Spring MVC
controller.
@InitBinder Method Annotates a method that customizes data
binding.
@ModelAttribute Parameter, | When applied to a method, used to preload
Method the model with the value returned from

the method. When applied to a parameter,
binds a model attribute to the parameter.

@RequestMapping Method, Maps a URL pattern and/or HTTP method to
Type a method or controller type.
@RequestParam Parameter | Binds a request parameter to a method

parameter.

@Configurable | Type Used with <context:spring-configured> to
declare types whose properties should be
injected, even if they are not instantiated by
Spring. Typically used to inject the properties
of domain objects.

@SessionAttributes | Type Specifies that a model attribute should be

stored in the session.

JMX Annotations

singleton, prototype, request, session, or
some custom scope.

@Order Type, Method, Defines ordering, as an alternative to These annotations, used with the <context:mbean—export>
Field implementing the org.springframework.core. element, declare bean methods and properties as MBean
Ordered interface. . .
operations and attributes.
@Qualifier Field, Guides autowiring to be performed by means
Parameter, Type, | other than by type. Annotation Use Description
Annotation Type
@ManagedAttribute Method | Used on a setter or getter method to
@Required Method (setters) | Specifies that a particular property must be indicate that the bean’s property should be
injected or else the configuration will fail. exposed as an MBean attribute.
@Scope Type Specifies the scope of a bean, either @ManagedNotification | Type Indicates a JMX notification emitted by a bean.

@ManagedNotifications | Type Indicates the JMX notifications emitted by

abean.
Transaction Annotations @ManagedOperation Specifies that a method should be exposed
. N . MB ion.
The @Transactional annotation is used along with the as an MBean operation
<tx:annotation-driven> element to declare transactional @ManagedOperation Used to provide a description for an
. . Parameter operation parameter.
boundaries and rules as class and method metadata in Java.
@ManagedOperation Provides descriptions for one or more
Annotation Use Description Parameters operation parameters.
@Transactional Method, Declares transactional boundaries and rules @ManagedResource Type Specifies that all instances of a class should
Type on a bean and/or its methods. be exposed as MBeans.

DZone, Inc. | www.dzone.com

http://www.refcardz.com

-/ REFCARDZ

DZone tech facts at your fingertips

Spring Configuration

. Annotation Use Description
SPRING ANNOTATIONS, continued P
@IfProfileValue Type, Indicates that the test class or method is
o . A . Method | enabled for a specific profile configuration.
estin nnotations
9 X @NotTransactional Method | Indicates that a test method must not execute
These annotations are useful for creating unit tests in the JUnit 4 style in a transactional context.
that depend on Sprlng beans and/or require a transactional context. @ProfileValueSource | Type Identifies an implementation of a profile value
Configuration source. The absence of this annotation will cause

Annotation Use Description profile values to be loaded from system properties.

@AfterTransaction Method | Used to identify a method to be invoked @Repeat Method | Indicates that the test method must be
after a transaction has completed. repeated a specific number of times.

@BeforeTransaction Method | Used to identify a method to be invoked @Rollback Method | Specifies whether or not the transaction for the
before a transaction starts. annotated method should be rolled back or not.

@ContextConfiguration | Type Configures a Spring application context @TestExecution Type Identifies zero or more test execution listeners
for a test. Listeners for a test class.

@DirtiesContext Method | Indicates that a method dirties the Spring @Timed Method | Specifies a time limit for the test method. If the
container and thus it must be rebuilt after the test does not complete before the time has
test completes. expired, the test will fail.

@ExpectedException Method | Indicates that the test method is expected to @Transaction Type Configures test classes for transactions, specifying
throw a specific exception. The test will fail if Configuration the transaction manager and/or the default
the exception is not thrown. rollback rule for all test methods in a test class.

ABOUT THE AUTHOR

Publications
= Spring in Action, 2nd Edition, 2007
= XDoclet in Action, 2003

Blog
= http://www.springinaction.com

Craig Walls

Craig Walls is a Texas-based software developer with more than 13 years’ experi-
ence working in the telecommunication, financial, retail, educational, and software
industries. He's a zealous promoter of the Spring Framework, speaking frequently at
local user groups and conferences and writing about Spring on his blog. When he's
not slinging code, Craig spends as much time as he can with his wife, two daughters,
six birds, three dogs, and an ever-fluctuating number of tropical fish.

Projects
= Committer to XDoclet project;

Originator of Portlet and Spring modules for XDoclet

RECOMMENDED BOOK

Spring in Action, 2nd Edition

is a practical and compre-
hensive guide to the Spring
Framework, the framework
that forever changed
enterprise Java development.
What's more, it's also the first
book to cover the new features
and capabilities in Spring 2.

vl

Y
N
X

7

BUY NOW
books.dzone.com/books/spring-in-action

Subscribe Now for FREE! refcardz.com

Upcoming Refcardz:

= Dependency Injection in EJB3

= Windows PowerShell
= RSS and Atom

= Flexible Rails:
Flex 3 on Rails 2

= Getting Started with Eclipse

= jQuery Selectors
= Design Patterns
= MS Silverlight 2.0

* NetBeans IDE 6
Java Editor

= Groovy

Getting
Started with
Ajax

GWT Style, Configuration
and JSNI Reference

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

ISBN-13: 978-1-934238-05-9
ISBN-10: 1-934238-05-8

.~ !DZone

The DZone Network is a group of free online services that aim to

888.678.0399
919.678.0300

satisfy the information needs of software developers and architects. Refcardz Feedback Welcome

From news, blogs, tutorials, source code and more, DZone offers refcardz@dzone.com

everything technology professionals need to succeed. Sponsorship Opportunities

To quote PC magazine, “DZone is a developer’s dream.” sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
mechanical, photocopying, or otherwise, without prior written permission of the publisher.

“ | “ 50795
97781934"238059

Version 1.0

$7.95

http://www.springinaction.com
http://books.dzone.com/books/spring-in-action
http://books.dzone.com/books/spring-in-action
http://books.dzone.com/books/spring-in-action
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

