
 1

Java 在线培训学习资料

更多学习资料，请到 www.rzchina.net 下载

第 1章 Java 语言概述

本章主要介绍什么是 Java 语言，Java 语言的起源与发展以及 Java 语言具有哪些特点。

在讲解的时候，为了能突出 Java 语言的特色，详细的分析了其与 C/C++语言的区别，最后

讲解了 Java 虚拟机的运行原理。

1.1 Java 的起源与发展

Java 是 SUN 公司在 1995 年推出的新的编程语言，它是一种跨平台的、应用现在网络高

速发展的编程语言。在编程语言中，可以认为 B 语言导致了 C 语言的出现，C 语言导致了

C++的出现，而 C++又导致了 Java 语言的出现。
很有意思的是：SUN 公司是在开发应用在家用电器的软件时，开发出 Java 的，他们的

第一个思想就是与平台无关性，这也是 Java 最大的特点和优势。
自 Java 正式推出之后，以特有的优势迅速发展，经过几年的发展，Java 已经在软件开

发和动态网站上占有相当大的市场。可以说 Java 语言是编程语言中的一场革命，它的每次

版本升级都会带来不小的轰动。

1.2 Java 的各种版本

Java 分为 J2SE、J2EE 和 J2ME 三种。J2SE 是 Java 平台标准版，主要应用于桌面程序

和 Java 小应用程序开发。J2EE 主要用于企业级开发和大型网站的开发。J2ME 主要用于手

机等移动设备程序的开发。
 Java SDK Micro Edition（J2ME）：此版本用来开发掌上电脑、手机等移动通信设

备。现阶段，不是所有移动设备都支持 Java，只有具备其运行环境的设备才能运行

它。
 Java SDK Standard Edition（J2SE）：主要用于开发一般的台式机应用程序，平时

说的 JDK 其实就是指 J2SE，本书也是围绕着它来讲述。
 Java SDK Enterprise Edition（J2EE）：用于开发分布式的企业级大型应用程序，

其中的核心被称为 EJB（Enterprise Java Beans）。
另外，从开发运行的角度，Java 又可分为 JRE 和 JDK，JRE 是面向最终用户的，而 JDK

http://www.rzchina.net

 2

是 Java 面向开发人员的。
 Java Runtime Environment（JRE）：JRE 是指 Java 运行环境，所有的 Java 程序都

需要安装此环境，它是面向最终用户的。
 Java Developers Kits（JDK）：JDK 是指 Java 开发工具箱，其中除了 JRE 外还包

括 Java 的开发工具，比如编译、调试环境等，它是面向 Java 开发人员的。

1.3 Java 的特点

Java 是一种跨平台、适合于分布式计算机环境的面向对象编程语言。具体来说，它具有

如下特性：简单性、面向对象、分布式、解释性、可靠、安全、平台无关、可移植、高性能、

多线程、动态性等。下面将重点介绍简单性、Java 语言的面向对象、平台无关、分布式、多

线程、可靠和安全等特性。

1.3.1 简单性

Java 语言是一种面向对象的语言，它通过提供最基本的方法来完成指定的任务，只需要

知道一些概念就能够编写出一些应用程序。Java 程序相对而言小，他的代码能够在小机器，

例如手机上运行，这应该是大家经常看到的。
Java 删除了 C++中极少被使用、难理解和令人混淆的功能。学过 C++的人肯定知道，

C++中有很多这种功能，例如运算符重载、多重继承和广泛的自动强迫同型，这些都是很让

人头疼的功能，值得高兴的是 Java 把他们都给删除了。在一些人看来，Java 的语法就是 C++
的清错版本。

1.3.2 平台无关性

前面已经提到过，Java 是在家用电器软件中出来的。怎么样才能让这种软件在每个上都

能正常的运行呢？这就用到了 Java 的平台无关性。在 Java 出现之前，这个问题是当时每个

程序员难解决的问题。Java 出现之后，这个问题就彻底解决了。引用他们的目标就是“只要

写一次程序，在任何地方，任何时间该程序永远都能够运行”。
Java 是怎么实现平台无关性的呢？只要安装 Java 运行系统，Java 就可以在任何处理器

上运行。Java 解释器生成与体系结构无关的字节码指令。Java 解释器生成与体系无关的字

节码指令，这些指令对应与 Java 虚拟机里表示，Java 解释器得到字节码后，对它进行转换，

使之能够在不同的平台上运行。
Java 的平台无关性是指用 Java 写的应用程序不用修改，就可以在不同的软硬件平台上

运行。平台无关有两种：源代码级和目标代码级。C 和 C++是具有一定程度的源代码级平台

无关。源代码级平台无关表明了用 C/C++写的程序无需修改，只需重新编译就可以在不同平

台上运行。
Java 主要靠 Java 虚拟机 JVM（Java Virtual Machine），在目标代码级实现平台无关性。

JVM 是一种抽象机器，它附着在具体操作系统之上，其本身具有一套虚拟机器指令，并有

自己的栈、寄存器组等。JVM 通常是在软件上而不是在硬件上实现的。
目前，Sun 系统公司已经设计实现了 Java 芯片，它主要使用在网络计算机上。另外，Java

 3

芯片的出现也会使 Java 更加容易嵌入到家用电器中。在 JVM 上，有一个 Java 解释器，使

用它来解释 Java 编译器编译后的程序。Java 编程人员在编写完软件后，通过 Java 编译器，

将 Java 源程序编译为 JVM 的字节代码。任何机器只要配备了 Java 解释器，就可以运行这

个程序，而不管这种字节码是在何种平台上生成的。有关 Java 平台无关性的原理如图 1.4
所示。

C语言的源代码

编译器

在不同平台上运
行

Windows linux

Java源代码

不同平台的虚拟
机

Windows虚拟机 linux虚拟机

Windows linux

运行 运行

图 1.4 Java 平台无关性示意图

另外，Java 采用的是基于 IEEE 标准的数据类型。通过 JVM 保证数据类型的一致性，

也确保了 Java 平台的无关性。
Java 的平台无关性具有深远意义。首先，它的出现使得编程人员所梦寐以求的事情变成

了事实，这将大大地加快和促进软件产品的开发。其次 Java 的平台无关性正好迎合了“网

络计算机”的思想。
如果常用的应用软件都使用 Java 重新编写，并且放在某个 Internet 服务器上，那么具有

网络计算机的用户，将不需要占用大量空间安装软件，他们只需要一个 Java 解释器。每当

需要使用某种应用软件时，下载该软件的字节代码即可，其运行结果也可以发回服务器。目

前已有数家公司开始使用这种新型的计算机模式，构筑自己的信息系统。

1.3.3 面向对象的特性和多态性

Java 语言是一种纯面向对象语言，可以说它是至今为止最优秀的面向对象语言。Java
的设计集中于对象及其接口，它提供了简单的类机制以及动态的接口模型。对象中封装了它

的状态变量和相应的方法，实现了模块化和信息的隐藏；而类则是提供了对象的原型，并且

通过继承的机制，子类可以使用父类所提供的方法，实现代码的复用。
面向对象其实是现实世界模型的自然延伸。现实世界中任何实体都可以看作是对象，对

象之间通过消息相互作用。另外，现实世界中任何实体都可归属于某类事物，任何对象都是

某一类事物的实例。如果说传统的过程式编程语言是以过程为中心，以算法为驱动的话，那

面向对象的编程语言就是以对象为中心，以消息为驱动。用公式表示，过程式编程语言为：

“程序＝算法＋数据”。面向对象编程语言为：“程序＝对象＋消息”。
所有面向对象编程语言都支持三个概念：封装、多态性和继承，Java 也不例外。现实世

界中的对象均有属性和行为映射到计算机程序上。属性则表示对象的数据，行为则表示对象

的方法。
封装是用一个自主式的框架，把对象的数据和方法连接在一起，形成一个整体。对象支

持封装，是封装的基本单位。Java 语言的封装性较强，那是因为 Java 无全程变量、无主函

数。在 Java 中，绝大部分成员是对象，只有简单的数字类型（字符类型和布尔类型除外）。

 4

对于这些类型，Java 提供了相应的对象类型包装，以便与其他对象交互操作。有关封装的原

理如图 1.1 所示。

图 1.1 封装的原理示意图

多态性就是多种表现形式。具体来说，可以用“一个对外接口，多个内在实现方法”表

示。举一个例子，计算机中的堆栈可以存储各种格式的数据，包括整形、浮点型或字符型，

不管存储的是何种数据，堆栈的算法实现都是一样的。针对不同的数据类型，编程人员不必

手工选择，只需要使用统一方法名（参数不同），系统可以自动选择。运算符重载一直被认

为是一种优秀的多态机制体现。由于考虑到运算符重载会使程序变得难以理解，所以 Java
最后还是把它取消了。有关多态的原理如图 1.2 所示。

方法体1 方法体2 方法体3 方法体4

相同的方法名称

图 1.2 多态的原理示意图

继承是指一个对象直接使用另一个对象的属性和方法。事实上，现实生活中遇到的很多

实体，都具有继承的含义。例如，把汽车看成一个实体，它可以分成多个子实体，如：轿车、

公交汽车等。以上子实体都具有汽车的特性，因此汽车是它们的“父亲”，而这些子实体则

是汽车的“孩子”。子类可以继承父类的属性和方法，与其他面向对象编程语言不同，Java
只支持单一继承。有关继承的原理如图 1.3 所如示。

图 1.3 继承的原理示意图

1.3.4 分布式应用

分布式包括数据分布和操作分布。数据分布是指数据可以分散在网络的不同主机上。操

 5

作分布是指把一个计算分散在不同主机上处理。
Java 支持客户机/服务器计算模式，因此它支持这两种分布。对于数据分布，Java 提供

了一个叫做 URL 的对象，利用这个对象，可以打开并且访问具有相同 URL 的对象，访问方

式与访问本地文件系统相同。对于操作分布，Java 的 Applet 小程序可以从服务器下载到客

户端，即部分计算在客户端进行，提高系统执行效率。有关分布式的原理如图 1.5 所示。

图 1.5 分布式示意图

Java 提供了一整套网络类库，开发人员可以利用这些类库进行网络程序设计，方便的实

现 Java 的分布式特性。

1.3.5 多线程

设计 Java 的目标之一就是为了满足人们对创建交互式网上程序的需要。多线程就是因

为这个目标设计出来的，它使用 Java 编写出来的应用程序可以同时执行多个任务。多线程

机制使应用程序能够并行执行，而且同步机制保证了对共享数据的正确操作。
线程是操作系统的一种新概念，线程又被称作轻量进程，是比传统进程更加小的，并且

可以并发执行的单位。C 和 C++采用单线程系统结构，而 Java 提供了多线程的支持。
Java 在两方面支持多线程。一方面，Java 环境本身就是多线程的。若干个系统线程运

行，负责必要的无用单元回收、系统维护等系统级操作。另一方面，Java 语言内置多线程控

制，可以大大简化多线程应用程序的开发。
Java 提供了一个 Thread 类，由它负责启动、运行、终止线程，并且可以检查线程状态。

Java 线程还包括一组同步原语，这些原语负责对线程实行并发控制。利用 Java 的多线程编

程接口，开发人员可以方便的写出支持多线程的应用程序，从而提供程序执行的效率。Java
的多线程在一定程度上受运行时所在平台的限制，如果操作系统不支持多线程，那么 Java
程序的多线程特性就不能表现出来。

1.3.6 可靠性、安全性

Java 最初的设计目的是电子类消费品，因此要求较高的可靠性。Java 虽然源于 C++，
但它消除了许多 C++不可靠的因素，可以防止许多编程错误。

它的可靠性和安全性表现在如下几点：
 Java 是强类型的语言，要求显式的方法声明。这保证了编译器可以发现方法调用错

误，保证程序更加可靠。
 Java 不支持指针，这杜绝了内存的非法访问。
 Java 的自动单元收集功能，可以防止内存丢失等动态内存分配导致的问题。
 Java 解释器运行时实施检查，可以发现数组和字符串访问的越界。
 Java 提供了异常处理机制。程序员可以把一组错误代码放在一个地方，这样可简化

 6

错误处理任务，便于恢复。
由于 Java 主要用于网络应用程序开发，因此对安全性有较高的要求。如果没有安全保

证，用户从网络下载程序执行就非常危险。Java 通过自己的安全机制，防止了病毒程序的产

生，以及下载程序对本地系统的威胁破坏。
当 Java 字节码进入解释器时，首先必须经过字节码校验器的检查，然后 Java 解释器将

决定程序中类的内存布局。随后，类装载器负责把来自网络的类装载到单独内存区域，避免

应用程序之间相互干扰破坏。最后，客户端用户还可以限制从网络上装载的类只能访问某些

文件系统。上述集中机制结合起来，使得 Java 成为安全的编程语言。

1.3.7 小程序和应用程序

用 Java 可以写两种类型的程序：小程序和应用程序。小程序就是嵌入在网页文档中的

Java 程序，而应用程序就是在命令行中运行的程序。对 Java 而言，对小程序的大小和复杂

性都没有限制。事实上，Java 小程序有些方面比 Java 应用程序更加强大。目前，由于 Internet
通讯速度有限，因此大多数小程序规模较小。小程序和应用程序之间的技术差别就在于运行

环境。
Java 应用程序运行在最简单的环境中，它的惟一外部输入就是命令行参数。另一方面，

Java 小程序需要来自 Web 浏览器的大量信息。它需要知道何时启动、何时放入浏览器窗口、

何处和何时激活关闭等等。由于这两种不同的执行环境，小程序和应用程序的最低要求不同。

1.4 Java 语言与 C、C++的区别

首先应该清楚，Java 是由 C++发展而来的，保留了 C++的大部分内容，其编程方式类

似于 C++。但 Java 的句法更清晰、规模更小、更易学。Sun 公司对多种程序设计语言进行

了深入研究，并摒弃了其他语言的不足之处，最终退出了 Java。正是这样，Java 从根本上

解决了 C++的固有缺陷，形成了一种新的完全面向对象的语言。
Java 和 C/C++的相似之处多于不同之处，有 C 基础的读者，学习 Java 会更容易。相比

较而言，Java 的编程环境更为简单。因篇幅所限，这里不能完全列出不同之处，仅列出一些

比较显著的区别。

1.4.1 指针

Java 没有指针的概念，从而有效地防止了在 C／C++语言中，容易出现的指针操作失误

（如指针悬空所造成的系统崩溃）。在 C/C++中，指针操作内存时，经常会出现错误。在

Java 中没有指针，更有利于 Java 程序的安全。

1.4.2 多重继承

C++支持多重继承，它允许多父类派生一个子类。也就是说，一个类允许继承多个父类。

尽管多重继承功能很强，但使用复杂，而且会引起许多麻烦，编译程序实现它也很不容易。

 7

所以 Java 不支持多重继承，但允许一个类实现多个接口。可见，Java 既实现了 C++多重继

承的功能，又避免了 C++的许多缺陷。

1.4.3 数据类型

Java 是完全面向对象的语言，所有方法和数据都必须是类的一部分。除了基本数据类型

之外，其余类型的数据都作为对象型数据。例如对象型数据包括字符串和数组。类将数据和

方法结合起来，把它们封装在其中，这样每个对象都可实现具有自己特点的行为。而 C++
将函数和变量定义为全局的，然后再来调用这些函数和变量，从而增加了程序的负担。此外，

Java 还取消了 C／C++中的结构和联合，使编译程序更简洁。

1.4.4 自动内存管理

Java 程序中所有的对象都是用 new 操作符建立在堆栈上的，这个操作符类似于 C++的
“new”操作符。Java 自动进行无用内存回收操作，不需要程序员进行删除。当 Java 中一个

对象不再被用到时，无须使用内存回收器，只需要给它加上标签以示删除。无用内存的回收

器在后台运行，利用空闲时间工作。而 C++中必须由程序释放内存资源，增加了程序设计者

的负担。

1.4.5 操作符重载

Java 不支持操作符重载，操作符重载被认为是 C++的突出特征。在 Java 中虽然类可以

实现这样的功能，但不支持操作符重载，这样是为了保持 Java 语言尽可能简单。

1.4.6 预处理功能

C／C++在编译过程中都有一个预编译阶段，即预处理器。预处理器为开发人员提供了

方便，但增加了编译的复杂性。Java 允许预处理，但不支持预处理器功能，因为 Java 没有

预处理器，所以为了实现预处理，它提供了引入语句（import），它与 C++预处理器的功能

类似。

1.4.7 Java 不支持缺省函数参数，而 C++支持。

在 C 中，代码组织在函数中，函数可以访问程序的全局变量。C++增加了类，提供了类

算法，该算法是与类相连的函数，C++类方法与 Java 类方法十分相似。由于 C++仍然支持 C，
所以 C++程序中仍然可以使用 C 的函数，结果导致函数和方法混合使用，使得 C++程序比

较混乱。
Java 没有函数，作为一个比 C++更纯的面向对象的语言。Java 强迫开发人员把所有例

行程序包括在类中。事实上，用方法实现例行程序可激励开发人员更好地组织编码。

 8

1.4.8 字符串

C 和 C++不支持字符串变量，在 C 和 C++程序中使用“Null”终止符代表字符串的结束，

在 Java 中字符串是用类对象（String 和 StringBuffer）来实现的，在整个系统中建立字符串

和访问字符串元素的方法是一致的。Java 字符串类是作为 Java 语言的一部分定义的，而不

是作为外加的延伸部分。此外，Java 还可以对字符串用“+”进行连接操作。

1.4.9 goto 语句

“可怕”的 goto 语句是 C 和 C++的“遗物”。它是该语言技术上的合法部分，引用 goto
语句造成了程序结构的混乱，不易理解。goto 语句一般用于无条件转移子程序和多结构分支

技术。Java 不提供 goto 语句，其虽然指定 goto 作为关键字，但不支持它的使用，这使程序

更简洁易读。

1.4.10 类型转换

在 C 和 C++中，有时出现数据类型的隐含转换，这就涉及了自动强制类型转换问题。

例如，在 C++中可将一个浮点值赋予整型变量，并去掉其尾数。Java 不支持 C++中的自动

强制类型转换，如果需要，必须由程序显式进行强制类型转换。

1.5 Java 虚拟机的运行原理

Java 源程序需要通过编译器编译成为.class 文件（字节码文件），Java 程序的编译和执

行过程如图 1.1 所示。

图 1.1 Java 程序的编译和执行过程

Java 虚拟机的建立需要针对不同的软硬件平台做专门的实现，既要考虑处理器的型号，

也要考虑操作系统的种类。目前在 SPARC 结构、X86 结构、MIPS 和 PPC 等嵌入式处理芯

片上、在 UNIX、Linux、windows 和部分实时操作系统上都有 Java 虚拟机的实现。Java 虚

拟机在不同系统和平台上的建立如图 1.2 所示。

1.6 如何才能学好 Java

如何学习 Java，这个问题应该上升到如何学习程序设计这种境界，实际上，学习程序设

 9

计也可以说是接受一种编程思想。每一种语言的程序设计思想大同小异，只是一些由语言特

性而带来的细微差别。比如 Java 中的“Interface”，在以前的学习中没有碰到过。以下详细

介绍几点：
 必须明确一个大方向，也就是说在面向对象的编程范畴中，进行学习与研究。目前

最流行的面向对象编程语言就是 C++和 Java，所以先锁定这两个目标。
 掌握 Java 的精华特性，而且一定要知道为什么。比如，nterface 和 Multi-thread。用

Interface 是更好的使用多继承的模型，而多线程则涉及到并发的特性。要完全理解

Interface 是什么、用多线程有几种常用的编程模型等等。
 理解了语言的特性之后，就可以试着上升到设计这个层次，毕竟学习语言是为了应

用。目前，比较好的开发模式是采用自顶向下、结合 MVC 模式的设计。首先要找

出最顶层的对象（这往往是最难的），然后一层一层往下递归。所以说，一般有图

形用户界面的程序应从界面开始设计。
 有了基本设计模型后，可以学一些设计模式（Design Pattern）。设计模式有很多种，

比如体系结构模式（Layering 分层、Pipe/Filter 管道或过滤器）、设计模式如对象池

Object Pool、缓冲池 Cache 等）、编程模式（比如 Copy-on-Write）。掌握这些模式

之后，就会对系统的整体结构有很好的把握。学术上倾向于一个系统完全由各种模

式组合而成。
 学习语言最好的方法就是实践。在一般教科书上的例子并不能算是实践，只能算是

掌握了语言的特性。而提倡做实际的 Project 也不是太好，因为还没有熟练的能力去

综合各种技术，这样只能是自己越来越迷糊。笔者认为比较好的方法是找一些经典

的例子，对其进行进一步的修改。通过修改，找出觉得可以提高性能的地方，加上

自己的设计，这样读者才能真正地感到有所收获。

图 1.2 Java 虚拟机的建立

1.7 本章小结

本章首先回顾了 Java 的起源与发展历史，然后阐述了 Java 语言的特点，并且与 C、C++
语言进行了比较，。最后又讲述了 Java 虚拟机的运行原理。通过本章的学习，使读者对 Java
语言有了一个大致的了解。

